2x^2+3+x^2+28=180

Simple and best practice solution for 2x^2+3+x^2+28=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2+3+x^2+28=180 equation:



2x^2+3+x^2+28=180
We move all terms to the left:
2x^2+3+x^2+28-(180)=0
We add all the numbers together, and all the variables
3x^2-149=0
a = 3; b = 0; c = -149;
Δ = b2-4ac
Δ = 02-4·3·(-149)
Δ = 1788
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1788}=\sqrt{4*447}=\sqrt{4}*\sqrt{447}=2\sqrt{447}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{447}}{2*3}=\frac{0-2\sqrt{447}}{6} =-\frac{2\sqrt{447}}{6} =-\frac{\sqrt{447}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{447}}{2*3}=\frac{0+2\sqrt{447}}{6} =\frac{2\sqrt{447}}{6} =\frac{\sqrt{447}}{3} $

See similar equations:

| 8x-0=3 | | 6+-3k=3 | | x+(-21)=-4 | | 5x-8=13+7x+84 | | 5/3-1/3=1/x | | 9x+x-5x=70 | | 18=0.75x | | x-(-20)=4 | | 8x-5x+6x=54 | | 9x+21=20x-45 | | 2(z+1)=18 | | 4(2x-8)=3(2-3x) | | 8x+3+2x+15=180 | | 0+14y=20 | | 9w=−81 | | 3(x+5)=7x-8 | | 2b+9=7 | | (15x-7)=360 | | (h–4)(h–10)=0 | | 3x+2(4x+2)=5x-8 | | .(r+2)(r+13)=0 | | (2x-2)+x=45 | | 0-10y=-18 | | (z-5)(z-1)-z^2=-13 | | 12t-18=-52 | | 2x2-16x+20=0 | | 4y-2/4-y/6=2 | | 0-7y=4 | | y=40(1/4) | | 30/4=x/20 | | -6(3x+15=18 | | 7x-8x=-5 |

Equations solver categories